79 research outputs found

    Compressing High-Dimensional Data Spaces Using Non-Differential Augmented Vector Quantization

    Get PDF
    query processing times and space requirements. Database compression has been discovered to alleviate the I/O bottleneck, reduce disk space, improve disk access speed, speed up query, reduce overall retrieval time and increase the effective I/O bandwidth. However, random access to individual tuples in a compressed database is very difficult to achieve with most available compression techniques. We propose a lossless compression technique called non-differential augmented vector quantization, a close variant of the novel augmented vector quantization. The technique is applicable to a collection of tuples and especially effective for tuples with many low to medium cardinality fields. In addition, the technique supports standard database operations, permits very fast random access and atomic decompression of tuples in large collections. The technique maps a database relation into a static bitmap index cached access structure. Consequently, we were able to achieve substantial savings in space by storing each database tuple as a bit value in the computer memory. Important distinguishing characteristics of our technique is that individual tuples can be compressed and decompressed, rather than a full page or entire relation at a time, (b) the information needed for tuple compression and decompression can reside in the memory or at worst in a single page. Promising application domains include decision support systems, statistical databases and life databases with low cardinality fields and possibly no text field

    Development of Wearable Systems for Ubiquitous Healthcare Service Provisioning

    Get PDF
    This paper reports on the development of a wearable system using wireless biomedical sensors for ubiquitous healthcare service provisioning. The prototype system is developed to address current healthcare challenges such as increasing cost of services, inability to access diverse services, low quality services and increasing population of elderly as experienced globally. The biomedical sensors proactively collect physiological data of remote patients to recommend diagnostic services. The prototype system is designed to monitor oxygen saturation level (SpO2), Heart Rate (HR), activity and location of the elderly. Physiological data collected are uploaded to a Health Server (HS) via GPRS/Internet for analysis.Comment: 6 pages, 3 figures, APCBEE Procedia 7, 2013. arXiv admin note: substantial text overlap with arXiv:1309.154

    Classification of Eukaryotic Organisms Through Cepstral Analysis of Mitochondrial DNA

    Get PDF
    Accurate classification of organisms into taxonomical hierarchies based on genomic sequences is currently an open challenge, because majority of the traditional techniques have been found wanting. In this study, we employed mitochondrial DNA (mtDNA) genomic sequences and Digital Signal Processing (DSP) for accurate classification of Eukaryotic organisms. The mtDNA sequences of the selected organisms were first encoded using three popular genomic numerical representation methods in the literature, which are Atomic Number (AN), Molecular Mass (MM) and Electron-Ion Interaction Pseudopotential (EIIP). The numerically encoded sequences were further processed with a DSP based cepstral analysis to obtain three sets of Genomic Cepstral Coefficients (GCC), which serve as the genomic descriptors in this study. The three genomic descriptors are named AN-GCC, MM-GCC and EIIP-GCC. The experimental results using the genomic descriptors, backpropagation and radial basis function neural networks gave better classification accuracies than a comparable descriptor in the literature. The results further show that the accuracy of the proposed genomic descriptors in this study are not dependent on the numerical encoding methods

    IMPROVING THE DEPENDABILITY OF DESTINATION RECOMMENDATIONS USING INFORMATION ON SOCIAL ASPECTS

    Get PDF
    Prior knowledge of the social aspects of prospective destinations can be very influential in making travel destination decisions, especially in instances where social concerns do exist about specific destinations. In this paper, we describe the implementation of an ontology-enabled Hybrid Destination Recommender System (HDRS) that leverages an ontological description of five specific social attributes of major Nigerian cities, and hybrid architecture of content-based and case-based filtering techniques to generate personalised top-n destination recommendations. An empirical usability test was conducted on the system, which revealed that the dependability of recommendations from Destination Recommender Systems (DRS) could be improved if the semantic representation of social attributes information of destinations is made a factor in the destination recommendation process

    Improved Classification of Lung Cancer Using Radial Basis Function Neural Network with Affine Transforms of Voss Representation

    Get PDF
    Lung cancer is one of the diseases responsible for a large number of cancer related death cases worldwide. The recommended standard for screening and early detection of lung cancer is the low dose computed tomography. However, many patients diagnosed die within one year, which makes it essential to find alternative approaches for screening and early detection of lung cancer. We present computational methods that can be implemented in a functional multi-genomic system for classification, screening and early detection of lung cancer victims. Samples of top ten biomarker genes previously reported to have the highest frequency of lung cancer mutations and sequences of normal biomarker genes were respectively collected from the COSMIC and NCBI databases to validate the computational methods. Experiments were performed based on the combinations of Z-curve and tetrahedron affine transforms, Histogram of Oriented Gradient (HOG), Multilayer perceptron and Gaussian Radial Basis Function (RBF) neural networks to obtain an appropriate combination of computational methods to achieve improved classification of lung cancer biomarker genes. Results show that a combination of affine transforms of Voss representation, HOG genomic features and Gaussian RBF neural network perceptibly improves classification accuracy, specificity and sensitivity of lung cancer biomarker genes as well as achieving low mean square erro

    Improved Classification of Lung Cancer Using Radial Basis Function Neural Network with Affine Transforms of Voss Representation

    Get PDF
    Lung cancer is one of the diseases responsible for a large number of cancer related death cases worldwide. The recommended standard for screening and early detection of lung cancer is the low dose computed tomography. However, many patients diagnosed die within one year, which makes it essential to find alternative approaches for screening and early detection of lung cancer. We present computational methods that can be implemented in a functional multi-genomic system for classification, screening and early detection of lung cancer victims. Samples of top ten biomarker genes previously reported to have the highest frequency of lung cancer mutations and sequences of normal biomarker genes were respectively collected from the COSMIC and NCBI databases to validate the computational methods. Experiments were performed based on the combinations of Z-curve and tetrahedron affine transforms, Histogram of Oriented Gradient (HOG), Multilayer perceptron and Gaussian Radial Basis Function (RBF) neural networks to obtain an appropriate combination of computational methods to achieve improved classification of lung cancer biomarker genes. Results show that a combination of affine transforms of Voss representation, HOG genomic features and Gaussian RBF neural network perceptibly improves classification accuracy, specificity and sensitivity of lung cancer biomarker genes as well as achieving low mean square erro

    Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features

    Get PDF
    This paper reports an experimental comparison of artificial neural network (ANN) and support vector machine (SVM) ensembles and their “nonensemble” variants for lung cancer prediction. These machine learning classifiers were trained to predict lung cancer using samples of patient nucleotides with mutations in the epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene, and tumor suppressor p53 genomes collected as biomarkers from the IGDB.NSCLC corpus. The Voss DNA encoding was used to map the nucleotide sequences of mutated and normal genomes to obtain the equivalent numerical genomic sequences for training the selected classifiers. The histogram of oriented gradient (HOG) and local binary pattern (LBP) state-of-the-art feature extraction schemes were applied to extract representative genomic features from the encoded sequences of nucleotides. The ANN ensemble and HOG best fit the training dataset of this study with an accuracy of 95.90% and mean square error of 0.0159. The result of the ANN ensemble and HOG genomic features is promising for automated screening and early detection of lung cancer. This will hopefully assist pathologists in administering targeted molecular therapy and offering counsel to early stage lung cancer patients and persons in at risk populations

    A Neural-CBR System for Real Property Valuation

    Get PDF
    In recent times, the application of artificial intelligence (AI) techniques for real property valuation has been on the increase. Some expert systems that leveraged on machine intelligence concepts include rule-based reasoning, case-based reasoning and artificial neural networks. These approaches have proved reliable thus far and in certain cases outperformed the use of statistical predictive models such as hedonic regression, logistic regression, and discriminant analysis. However, individual artificial intelligence approaches have their inherent limitations. These limitations hamper the quality of decision support they proffer when used alone for real property valuation. In this paper, we present a Neural-CBR system for real property valuation, which is based on a hybrid architecture that combines Artificial Neural Networks and Case- Based Reasoning techniques. An evaluation of the system was conducted and the experimental results revealed that the system has higher satisfactory level of performance when compared with individual Artificial Neural Network and Case- Based Reasoning systems

    Smart city technology based architecture for refuse disposal management

    Get PDF
    Many modern cities are currently encumbered with various challenges among which is the need to promote the culture of environmental sanitation for healthy living. However, advances in information communications technology have given birth to the concept of smart city, which is rapidly being applied to address some of the challenges being faced in such cities. This paper presents the development of an architecture based on smart city technology, for refuse disposal management in communities. A proof of concept prototype was implemented for the proposed architecture using Arduino UNO microcontroller board, proximity sensor, breadboard, refuse bin and a personal computer. The proximity sensor was interfaced with the Arduino board to capture dataset that correspond to the five different positions calibrated on a refuse bin. The dataset was shown to be of good quality since the graph of the mean voltages against the distances is similar to the proximity sensor characteristic graph. To determine the appropriate classifier for realizing the pattern classification unit of the prototype, an experiment was performed using the acquired dataset to train five different variants of the K-NN classifier. The 1-NN classifier was nominated for the prototype because it is simple and it gave higher values of accuracy, precision and recal
    • …
    corecore